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Overview of our ABL-Component Objectives

! Use numerical simulations to improve/augment 
atmospheric turbulence characterization so that:

� phase-screen specification for optical propagation simulations 
may be evaluated and possibly improved, and

� more intelligent modeling may proceed, admitting simulation 
of larger-scale processes and the development of a reliable 
atmospheric decision aid.
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The Problem with Stratified Fluids
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Challenges for ABL Simulation
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Challenges for ABL Simulation

! Range of scales: from 200km to 100m (or smaller).

! Non-Kolmogorov: current sub-grid-scale (SGS) turbulence 
parameterization schemes are inadequate for stable stratification.

! Combined numerical/observational studies are feasible for 
developing improved phase-screen descriptions, but simulations 
of isolated turbulent layers still require state-of-the-art 
techniques.
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Potential-Temperature Steps in the Stratosphere

Chen, Kelley, Gibson-Wilde, Werne & Beland, Annales Geophysicae, 2001
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Wind shear: Balloon Comparison

CT
2 RiT

Coulman, Vernin & Fuchs, Applied Optics 34 5461 (1995)
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Mixing Layers through the Troposphere and Stratosphere

CT
2 RiT

Coulman, Vernin & Fuchs, Applied Optics 34 5461 (1995)
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Sousy Radar over Harz, Germany

Chilson, Muschinski & Schmidt, Radio Science, 32, 1997
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Sousy Radar at Arecibo

Rüster and Klostermeyer, Geophys. Astrophys. Fluid Dynamics, 26, 1983
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Radar Backscatter Ierkic, Woodman & Perillat, Radio Science 25, 941 (1990)

Re ~ 106-107

120 m
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Parsons & Brown, 2001

Kelvin-Helmholtz at VTMX



DoD UGC, June 2002, Austin Joe Werne CoRA, NWRA, Inc.

Blumen, Banta, Burns, Fritts, Newsom, Poulos, Sun, Dyn. Atmos. Oceans, 2001

Kelvin-Helmholtz at CASES-99
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Other Photo 1979

Estes Park, Colorado, 1979 (photo by Bob Perney)
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Fort Collins Photo
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Colorado Springs, Colorado, 2000 (photo by Tye Parzybok)
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Denver Photo
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Denver, Colorado, 1953 (photo by Paul E. Branstine)
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Noctilucent Clouds, Kustavi, Finland, 1989 (photo by Pekka Parviainen)

NLC Images

Joe Werne CoRA, NWRA, Inc.DoD UGC, June 2002, Austin
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DNS Efforts

! Validate simulations
! Characterize/quantify atmospheric turbulence

Phase Screen Specification

! Combine observation and simulation for long paths
! Quantify non-Kolmogorov effects

Turbulence Simulation Algorithm Development

! SGS parameterizations
! Better upper boundary conditions
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Wind Shear Gravity-Wave Breaking
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3D Incompressible Navier-Stokes Solver
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• Stream-function/vorticity formulation

• Fully spectral (3D FFT’s = 75% computation)

• Radix 2,3,4,5 FFT’s

• Spectral modes and NCPUs must be commensurate

• Communication: shmem, global transpose, data 
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• Parallel I/O every ~ 60 δt
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Headaches, woes, and what to do about them.
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! Typical 20-hour run on 500 processors generates 800 Gigabytes of data and 
over 70,000 individual files.

! Interactive performance can be poor during large production runs.

! Center non-uniformity contributes to drudgery.
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Headaches, woes, and what to do about them.

! Typical 20-hour run on 500 processors generates 800 Gigabytes of data and 
over 70,000 individual files.

! Interactive performance can be poor during large production runs.

! Center non-uniformity contributes to drudgery.

! Elaborate scripts automate job specification, source-code editing, compilation, 
and submission as well runtime data transfers and migration off-line to archival 
storage.

! FORTRAN code and accompanying Perl scripts run without modification at 6 
supercomputer centers and 4 MPP architectures (T3E, O3k, SP, Compaq).

! DoD has adopted our batch-preparation and archival-storage routines as a 
standard (PST, Werne, Gourlay).  
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Wind shear
Werne, Meyer, Bizon & Fritts, 2001Vortex-Tube Morphology

Gravity-wave breaking
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Kelvin-Helmholtz: Evolution
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Movie
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Kelvin-Helmholtz
Werne, Meyer, Bizon & Fritts, 2001Vortex-Tube Morphology
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Kelvin-Helmholtz
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Kelvin-Helmholtz
Werne, Meyer, Bizon & Fritts, 2001Vortex-Tube Morphology
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Kelvin-Helmholtz
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Kelvin-Helmholtz
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Kelvin-Helmholtz
Werne, Meyer, Bizon & Fritts, 2001Vortex-Tube Morphology
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Kelvin-Helmholtz
Werne, Meyer, Bizon & Fritts, 2001Vortex-Tube Morphology

DoD UGC, June 2002, Austin Joe Werne CoRA, NWRA, Inc.
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Wind shear: Balloon Comparison

Chen, Kelley, Gibson-Wilde, Werne & Beland, Annales Geophysicae, 2001
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Wind Shear: flow decomposition
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Wind shear: production and dissipation
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Stratified Turbulence Theory: thermal and viscous dissipation
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Wind shear: 2nd-order structure-function fits

/ r2 / r2 / r2 / r2
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Werne & Fritts, 2000

Wind shear: 2nd-order structure-function fits
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α=∆ rCU2
r Werne & Fritts, 2000
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Wind shear: 2nd-order structure-function fits
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α

CT
2

T Structure Function Fits Werne, Meyer, Bizon & Fritts, 2002

Joe Werne CoRA, NWRA, Inc.
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U Structure Function Fits Werne, Meyer, Bizon & Fritts, 2002

Joe Werne CoRA, NWRA, Inc.DoD UGC, June 2002, Austin
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ABLE ACE anemometry data

Bruce Masson, 1996

also, Michael Roggeman, private communication, 2001
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Gravity Wave: Evolution

Bizon, Werne & Fritts, 2001
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Gravity wave: Production and Dissipation

Bizon, Werne & Fritts, 2001

KE

KE prod., Є

PE prod., χ
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Conclusions

1. Stratification restricts mixing dynamics to vertically confined regions. 

2. Entrainment zones maintain sharp thermal gradients that dominate optical effects.

3. Mixing in the interior of turbulent layers reduces thermal gradients.

4. Mixing zones in wind-shear simulations duplicate morphology exhibited by cloud 
observations.

5. Potential-temperature profiles, duration, CT
2 profiles, and Ri profiles agree with balloon 

measurements.

6. Turbulence constants Cθ and C (relating χ and Є to CT
2 and CU

2) obtained from 
comparison with the middle of a simulated shear layer agree with atmospheric 
measurements, as do the spectral slope and inner scale.

7. Breaking gravity waves, in the absence of shear, dissipate rapidly.

8. Gravity-wave breaking is inherently out of balance.

9. Entrainment zones are non-stationary, inhomogeneous, and anisotropic; unfortunately 
they also have the greatest impact on optical propagation.
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Modeling τij
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Modeling τij
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Modeling τij

Horizontal Array Turbulence Study (HATS) was designed to test SGS techniques.
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Horizontal Array Turbulence Study (HATS) 

Four different sonic arrays, 38 cases

z = 6.90m, dy = 6.70m
z = 8.66m, dy = 4.33m
z = 8.66m, dy = 2.17m
z = 5.15m, dy = 0.63m

z = 3.45m, dy = 3.35m
z = 4.33m, dy = 2.17m
z = 4.33m, dy = 1.08m
z = 4.15m, dy = 0.50m

Tom Horst et al (2002), NCAR, JHU, PSU
Pete Sullivan, NCAR
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ARRAY-2
zs = 8.66m, dys = 4.33m

zd = 4.33m, dyd = 2.17m
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ARRAY-3

zd = 8.66m, dyd = 2.17m

zs = 4.33m, dys = 1.08m
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ARRAY-4

zs = 5.15m

dys = 0.63m

zd = 4.15m

dyd = 0.50m
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U
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Model-Data Correlations

without Lij

with Lij
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Model-Data Correlations Practical Computation of Lij

without Lij

with Lij
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Gravity-Wave Radiation Conditions
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Gravity-Wave Radiation Conditions

Plane Waves
Linear Boussinesq Equations

Dispersion Relation

(3)(1)

(2)

Klemp & Durran (1983):
Solve (1) & (2) subject to (3)Elliptic Equation for Pressure

(How should we handle BC�s?)
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Gravity-Wave Radiation Conditions
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Gravity-Wave Radiation Conditions

Plane Waves

Elliptic Equation for Pressure
(How should we handle BC�s?)

Klemp & Durran (1983):
Solve (1) & (2) subject to (3)

(2)

1

Linear Boussinesq Equations
Dispersion Relation

(3)(1)

For low frequency �
OK if kz>>kx, but other waves are trapped!
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Gravity-Wave Radiation Conditions

2
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Gravity-Wave Radiation Conditions
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Gravity-Wave Radiation Conditions

2

α(z) = 0

η(z) = 0

α(z) > 0

η(z) > 0

II

I

L

Linear Boussinesq Equations

1. If α(z) too small, reflections from outer boundary.

2. If α(z) too large, reflections from inner boundary.
3. If λ > L, reflect from II $ must make L large.
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Gravity-Wave Radiation Conditions

Analyze     and               by recasting as a scattering problem.1 2
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Gravity-Wave Radiation Conditions

Analyze     and               by recasting as a scattering problem.1 2

Linear Boussinesq Equations
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Gravity-Wave Radiation Conditions

Step function Raised cosine

Analyze     and               by recasting as a scattering problem.1 2

1. Reflection is reduced at high θ.    2. Smooth variation decreases reflection.
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Gravity-Wave Radiation Conditions
3
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Gravity-Wave Radiation Conditions
3 Try a different approach: Start with the solution you want.
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Gravity-Wave Radiation Conditions
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Gravity-Wave Radiation Conditions
3 Try a different approach: Start with the solution you want.

Damped Plane Waves

Dispersion Relation

New System of Equations
for Damping Layer (PML)

Linear Boussinesq Equations

where
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Gravity-Wave Radiation Conditions

α(z) η(z) PMLKlemp & Durran
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Gravity-Wave Radiation Conditions

3� PML at finite Re
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Gravity-Wave Radiation Conditions
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ABL Future Work Wish List

! Continued comparison with data
� CASES-99
� VTMX
� Air Force Balloon and Radar

! A priori tests and SGS development
� Eddy-viscosity models
� Velocity-estimation models
� Event catalog for meso-scale models

! Characterize nature of stratified turbulence
� Turbulence/billow/mean-flow
� Stability profile
� Turbulence anisotropy

! Investigate impact of initial conditions
� Amplitude and shape of noise spectrum
� Optimal perturbations
� Vary Ri and nonlinear thermal structure

! High-resolution wave-breaking solutions
� High-Re incompressible solutions

! Spatial modulation and distribution of turbulence
� Multiple billow/wave interactions
� Phase-screen specification using combined DNS/observation results
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ABL-Related Publications

� Chen, Kelley, Gibson-Wilde, Werne & Beland, 2001: �Comparison of observed lower atmospheric turbulent 
structures with a direct numerical simulation� Annales Geophysicae, (in press).

� Dubrulle, Laval, Sullivan & Werne, 2001: �A new dynamical subgrid model for the planetary surface layer.  
I. The model and a priori tests� J. Atmos. Sci. (in press). 

� Werne, Bizon, Meyer & Fritts, 2001: �Wave-breaking and shear turbulence simulations in support of the 
Airborne Laser� 11th DoD UGC, Biloxi. 

� Werne & Fritts, 2001: �Anisotropy in a stratified shear layer� Physics and Chemistry of  the Earth, 26, 263.

� Werne, Adams & Sanders, 2001: �Hierarchical Data Structure and Massively Parallel I/O� Parallel Computing
(submitted). 

� Werne & Fritts, 2000: �Structure Functions in Stratified Shear Turbulence� 10th DoD HPC UGC, Albuquerque.

� Fritts & Werne, 2000: �Turbulence Dynamics and Mixing due to Gravity Waves in the Lower and Middle 
Atmosphere� in Atmospheric Science across the Stratopause, Geophysical Monograph 123, American Geophys. 
Union, 143-159.

� Gibson-Wilde, Wene, Fritts & Hill, 2000: �Direct numerical simulation of  VHF radar measurements of 
turbulence in the mesosphere� Radio Sci. 35, 783.

� Hill, Gibson-Wilde, Werne & Fritts, 1999: �Turbulence-induced fluctuations in ionization and application to 
PMSE� Earth Planets Space, 51, 499. 

� Werne & Fritts, 1999: �Stratified shear turbulence: Evolution and statistics� Geophys. Res. Lett., 26, 439. 

� Werne & Fritts, 1999: �Anisotropy in Stratified Shear Turbulence� 9th DoD HPC UGC, Monterey. 

� Werne & Fritts, 1998: �Turbulence in Stratified and Sheared Fluids: T3E Simulations� 8th DoD HPC UGC, 
Houston. 
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